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A velocity -defect law for channel flow is shown to result from the single requirement of 
Reynolds-stress spectral ‘ smoothness ’ for any mean profile maintained free of inflex- 
ions by transient instabilities. The deduced velocity is a logarithmic function of position 
near boundaries and parabolic in mid-regions of the flow, independent of the detailed 
mechanisms of momentum transport by the fluid. However, if the ‘smoothness’ of the 
spectral tail is decreased, a second logarithmic layer of steeper slope emerges inside the 
first layer. Profile data from drag-reduction experiments gathered by Virk (1975) 
exhibit the deduced inner log layer and its transition region to the usual outer flow. 

1. Introduction 
Recent experimental and theoretical studies of the infrequent but violent momen- 

tum transferring processes in shear boundary layers renew the old hope that a rnech- 
anistic rather than statistical understanding of turbulent macro-equilibration is 
possible. I n  addition, new data on chemical additives which alter the turbulent 
boundary layer of shear flows suggest that  i t  will be possible to assess critically the 
depth of that mechanistic understanding. 

This paper wae motivated in large part by Landahl’s (1975) theoretical interpreta- 
tion of the brief boundary-layer bursts as ‘secondary instabilities ’ on transient inflex- 
ions which are observed in the mean velocity profile. It is not at all clear how such 
instabilities maintain the mean properties of the flow, nor how those mean properties 
depend upon the complicated physical and chemical variations of the flow near the 
boundary. However, it is observed that the resulting mean flows have no inflexions, 
supporting the classical view of the destabilizing mechanism. 

Turbulent Poiseuille flow in channels has been and remains a central object of 
theoretical study in fluid dynamics. It is used as the first mathematical example in 
this paper because i t  is statistically stable, homogeneous in two dimensions, arld 
geometrically simple. Among the earliest observations was the relation between 
locally averaged flow properties and the stress on the boundaries. Principal among 
these is the velocity-defect law that, away from the boundaries, the departure of the 
average flow from its maximum value appears to  become independent of viscosity and 
can be represented quite accurately as 

where L’ is the average velocity a t  a distance z from the boundary, &, is the maximum 
velocity, zo is the half-width of the channel, l: = T$ is called the friction velocity, 
where T,, is the wall stress per unit mass, and G(z/zo) is some universal function of its 
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argument. The report which follows seeks to link the recent mechanistic inquiry with 
the early statistical observations by deducing the qualitative form of G(z/z,), in (l.l), 
both for normal Newtonian flow and for the non-Newtonian flows caused by chemical 
additives. 

Although no deductive theory has successfully predicted the full structure of G, 
Millikan (1938) has shown that it will have a logarithmc form in any region of overlap 
it may have with the observed ‘law of the wall’. The latter observed law is that near a 
smooth wall the average velocity appears to become independent of zo and can be 
represented quite accurately as 

tT/F, = F(rC z/v), (1.2) 

where v is the kinematic viscosity of the fluid and F is some universal function of its 
argument. For a ‘rough’ wall v/r: is replaced in the argument of F by an equivalent 
roughness length. Many people have written on this topic, for there is an exciting 
element of black magic in general results which are independent of the mechanism 
(e.g. Yajnik 1970; also Fendell 1972). Yet only a few of these writers have noted that 
an overlap of (1.1) and (1.2) is not required by either logic or dynamics. The empirical 
fact is the observation of an (extensive) logarithmic region. It is not a deduction but 
these observations which establish overlap of the ‘laws’ (1.1) and (1.2). However, it  
will be shown here with less recourse to hypothesis that a different, but compatible, 
explanation of the logarithmic region of the velocity-defect law is possible. Also, this 
more mechanistic explanation determines the entire form of G .  

Drag-reducing chemical additives have provided a new challenge to accepted 
rationalizations of turbulent shearing flow since they modify mean velocity profiles. 
Hence we may now establish certain limits of validity of our current understanding, as 
well as testing new proposals concerning the dissipation mechanisms in turbulence. 
Virk (1975) has assembled his and others’ work in a review, covering a wide variety of 
measurements with many different chemicals, which are summarized in his idealized 
schematic diagram (figure 1). Data supporting this idealization are reproduced later 
in this paper. The principal conclusions drawn by Virk are that point C in figure 1 is 
determined by the kind and amount of drag-reducing additive used, while the ‘ulti- 
mate’ profile can occupy the entire flow and is independent of the kind of additive 
used. A first explanation of the ‘inner’ logarithmic layer is given in $4 here. The 
implication is that the inner layer is a normal fluid property, not so much created as 
‘exposed’ and extended by the chemical additives. 

The observations by Kline et al. (1967) of infrequent violent disturbances near 
boundaries in turbulent shearing flow were among the first to stimulate the current 
‘mechanistic’ era in the study of turbulence. These disturbances appear to be respon- 
sible for most of the momentum transport from the fluid to the boundary, and hence 
are the important processes to study for an understanding of the mean profile and 
drag reduction. Landahl(l972, 1975, 1977) has explored the interpretation that these 
disturbances are instabilities occurring on, and moving with, transient inflexions in 
the mean profile. Presumably, then, instabilities remove inflexions from the mean 
flow, the mean being established by momentum transfer due to these recurring tran- 
sient instabilities. 

Earlier attempts a t  quantitative shear-flow turbulence theory based on stability 
arguments (e.g. Malkus 1954, 1956, 1961; Gol’dshtik 1969; Gol’dshtik et al. 1971) had 
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FIGVRE 1 .  An idealized drag-reduction velocity profile (ABCD). BL is the continuation of the 
viscous boundary region. BN is the normal logarithmic law. BC is the ‘inner’ logarithmic law. 
BM is the ‘ultimate’ profile. (After Virk 1975.) 

explored the possibility that the linear stability of the evolved mean flow was central in 
determining the turbulent amplitudes. This mechanism was found to be quantitatively 
inadequate by the careful numerical work of Reynolds & Tiederman (1967) on the 
linear problem. Their results require that instabilities associated with finite amplitude 
departures from the mean be responsible for the turbulent momentum transfer, in 
keeping with the current work described in the last paragraph. However, from the 
early studies of the role of linear stability in turbulent flow grew the search for formal 
upper bounds on momentum and heat transport. That profound work, first by How- 
ard (1963, 1972) and then by Busse (1969, 1970)’ Clhan (1971) and Joseph (1976), 
represents the first completely deductive quantitative results on turbulent flow. 
Unfortunately, these upper bounds on transport are found to be close to reality in 
only a few circumstances. A likely reason for this inadequacy emerges in $3,  There 
it is seen that a lack of any formal constraint reflecting the physics of inflexional 
instability may be the major weakness of the upper-bound theory when applied to 
shear flows. 

The central purpose of this paper is to explore the simplest amechanistic properties 
of a mean velocity profile maintained by inflexional instabilities to be of positive (or 
negative) curvature. Section 2 contains the parameter definitions for channel 00w and 
the descriptive formalism for a general representation of everywhere positive functions. 
Section 3 contains the hypothesis of spectral ‘smoothness ’ in its mathematical form 
and also the deduced (Newtonian) velocity-defect profile. Section 4 contains examples 
of the effects of (non-Newtonian) reductions in the spectral tail of the momentum 
transport. An ‘inner’ logarithmic layer and its transition region are found. Section 6 
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contains an application of the method to plane Couette flow and cylindrical Couette 
flow, predicting unusual effects upon the addition of drag-reducing chemicals. The 
generalizability of the method to other turbulent processes is discussed in the con- 
clusion. 

2. Turbulent Poiseuille channel flow and everywhere positive functions 
The symbols used here for position (x, y, 8, $) and velocity (u, w, U )  in channel flow 

are indicated in figure 2. Although the mean velocity U = U ( z )  is observed to have no 
inflexions, the instantaneous downstream velocity u(x, t )  has frequent inflexions. The 
horizontal average of the equations of motion for a normal fluid of constant density is 
written as 

where 

p is the density, Fo the average pressure and W5 the Reynolds stress. The first integral 
of (2.1) is 

(2.3) 

The sum of the Reynolds and viscous stress varies linearly with z, both vanishing at 
z = 0 for the symmetric mean flow indicated in figure 2. 

At  this point a representation of the curvature of U is introduced to reflect the 
presumed inflexional instability mechanism and the observation that the curvature 

dU 
‘f = 3 2  = WG-V- ,  

20 dz 

- 

zg d2U 
u, dz2 

is of one sign. One writes 

where 

the superscript star denotes the complex conjugate, and 

$25 = n(2+zo)/zo, 0 < $ 6 2n (28 = 4-n). (2.6) 

It was shown by Fej6r (1916), and we shall see shortly, that the half-space summation 
over 0 < k < 00 in (2.5) provides a complete representation of an everywhere positive 
function. 

The boundary conditions on the velocity field are in general that 

w = u = O  on $ = 0 , 2 n  (2.7a) 

and for a smooth boundary 

awl& = 0 on $ = 0 , 2 ~ .  (2.7b) 

Hence 

and from (2.1), (2.4) and (2.8) 
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FIGURE 2. Turbulent Poiseuillo flow in a channel. 

where R, is the stress (or pressure) Reynolds number, which may be presumed given 
as the experimental parameter for this flow. 

The relation between the representation for I in (2.5) and a normal Fourier repre- 
sentation for 1*1 can be established straightforwardly. Let 

I, = A, + iB,, (2.10) 

where the A ,  and B, are all real. Then 

m m 

($6) = x (2-8k,0) c (AmAm+k+BmBm+k)cosk# 
k-0 m=O 

m m  

For symmetric (I*I) ($6) one may write 

m 

m=O 
(I*I) ($6) flkcos k$6, 

(2.12) 

Although there are as many amplitudes Ik as Fourier coefficients c k ,  they are related 
through (2.12) in a quadratic fashion. Hence, for a given set of n (uniquely defined) 
coefficients Ck, there are generally n2 sets (Ik} which satisfy (2.12). Fej6r’s (1916) paper 
was a first formal study on the nature of this redundancy. Work in progress suggests 
that the I, sets approach a narrow and smooth distribution in amplitude, k space for 
those particular values of flk near functions which are marginally positive. 

The next section describes the qualitative features of the velocity profiles I’ which 
emerge as a consequence of a hypothesized ‘smooth’ spectrum for Ik .  

3. A ‘smoothness’ hypothesis 
A mathematical representation of a process is a particularly appropriate one if a 

simple aspect of that representation reflects a principal observed consequence of that 
process. In quasi-linear processes, a single eigenfunction of the linear theory often 
describes quite closely the observed qualitative behaviour of a system. However, it is 
quite clear that a single Fourier component, or a single element of I in (2.5)’ fails to 
describe observed nonlinear features of shear-flow turbulence. Here one explores the 
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possibility that some simple integral feature of the representation is related to obser- 
vations. Indeed, the experimental description (Willmarth & Bogar 1977) of an intense 
small-scale vortical motion, expanding in scale, changing shape and rising through the 
boundary layer, suggests a rather uniform projection of the momentum transport 
process on all scales. Hence one seeks the integral consequences of an Ik spectrum whose 
features are unimportant, in some asymptotic sense. Of course, a t  some very small 
scale, say k,, one expects viscous effects to reduce 4, to a vanishingly small value. Yet 
the change in I ,  might be ‘smooth’ in the range of k where Ik is finite. 

To explore the consequence of this possibility, it is convenient to sum (2.5) by parts, 
assuming that there is some k, such that .Ik N 0 for k > k,. One writes 

I ( $ )  = x m Ikeik+ 21 x kv Ikeik‘, 

k=O k=O 

and defines 

or 

Repeating this summation by parts on the final sum in (3.2), one may write 

Ageneral expansion in terms of higher differences follows, but will not be used here. 
One now observes that, if Ik is ‘smooth’ in the sense that 

(A1)k = O ( ~ / ~ ” ) ,  = o ( f , / k F )  13.4) 

then from (3.3) (3.5) 

for all angles $ 
exists if the weak condition (3.4) is met. 

k;l. Hence a unique, and surprisingly simple, form for I ( $  & k;’) 

From (2.4) and (3.5) a complete ‘velocity-defect law’ can be determined as 

(LLL- P) /L :  = m-2110121ncosec$$. (3.6) 

This form is parabolic in mid-regions of the flow and logarithmic near the boundary. 
For I, = O(l) ,  it is the only law whose qualitative behaviour is insensitive to the 
features of the underlying spectrum, yet reflects the instability mechanisms which are 
presumed responsible for the positive curvature. 

The velocity-defect law (3.6) contains no hint of the complicated double logarithmic 
structure seen in figure 1 .  Clearly, the hypothesis of spectral ‘smoothness ’ must break 
down a t  large k when drag-reducing chemicals are added to the fluid. Models of such a 
process, and of the normal termination of the Ik spectrum, are discussed in the follow- 
ing section ($4).  
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At the other end of the k spectrum comparison of the defect law (3.6) and data from 
Poiseuille-like flow with various pressure gradients indicates the dependence of mid- 
region amplitudes on those pressure gradients. Since it is the process behind WU, the 
Reynolds stress, which one has presumed to lead to spectral ‘smoothness’ for I ,  it is 
plausible that other effects contributing to I could disrupt smoothness. From (2.1) and 
(2.4) one sees that the mean pressure gradient as well as diZ;ii/dz determines I*I .  Hence 
a non-smooth contribution to the spectrum a t  k = 0 occurs and is discussed in 4 5.  

The proposal that ‘smoothness ’, in the sense of (3.4), could lead to  a unique velocity- 
defect law and the form (3.6) of that  law have both been reported before (Malkus 
1961) and discussed in the literature (Townsend 1961). However, that  earlier work was 
done in ignorance of FejBr’s study, and the correct summation limits in (2.5). I n  conse- 
quence, the amplitude of C’ deduced in that work depended entirely upon the unknown 
amplitude of a postulated smallest scale of motion. Note that the amplitude of C 
found here [see (3.6)] depends on I,, a quantity represented in every Fourier component 
(2.11) of the Reynolds stress. 

4. Spectral tails and the ultimate profile 
The assumption of spectral smoothness may seem less plausible a t  those wave- 

numbers where viscous effects first become as important as nonlinear advection, for it 
is a t  this scale of motion that the smallest finite amplitude instabilities are observed to 
occur. Also, it is just a t  these wavenumbers that drag-reducing chemical additives 
are presumed to be most effective in producing non-Newtonian effects. In  this section, 
spectral tails are modelled in order to investigate conditions under which altered mean 
flow profiles will occur. A principal goal is to determine those aspects of any profile 
alteration which are insensitive to spectral details of the model. 

A plausible requirement for a fluid-dynamical spectral tail is that it should drop off 
faster than any finite negative power of k, in order that  all moments of the flow be 
finite. A second requirement is that all presumed tails are continuous with and match 
the smoothness condition a t  the wavenumber where the tail joins the inertially con- 
trolled lower wavenumber spectrum. The simplest tail to meet these requirements is a 
modified exponential. Hence it is proposed that we explore the consequences of the 
tail 

which is continuous with the spectrum a t  k < k, and for which 

(AI)k,, = I k O [ ( 1 + a + P + . . . ) e - - r -  11, 

(A21)ko = Ik,[( 1 + 2a + 4P+. . .) e-2Y - 2( 1 +a +pi -  . . .) e-7 + 11. 

In (4.1), a, p, y ,  . . . are arbitrary constants subject only to the condition to be imposed 
on (AI )ko  and (A21)ko. The wavenumber k, ( < k,) marks the low wavenumber end of 
the tail, and y characterizes the degree of abruptness of the spectral cut-off. 

The general spectrum (2.5) determining the profile curvature may now be written 
with the help of (4.1) as 

I ($)  = 2 &eeik6+ C Iko[1+a(k-ko)+~(k-k,)2+ ...I exp[-y(k-k,)]exp(ik$), 

(4.3) 

ko m 

k=O k=ko+l  
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or, by performing the infinite sum over the tail, as 

1 + e-a 
+’(I-, - ) 3+ ...I , (4.4) 

where a = y - $ .  
As it stands, with k, and all the Ik unspecified, (4.4) can describe any plausible 

turbulent profile of positive curvature at any Reynolds number. At this point one seeks 
asymptotic consequences of the smoothness hypothesis 

( A l ) k  = O(&/k,) ,  ( A 2 1 ) k  = O(Io/ki) ,  0 < k < ko, (4.5) 

and from (3.2), (3.3) and (4.4) concludes that for q5 B k;l 

If then a,P, y = O(k;’), (4.6) reduces to the result given in (3.5) and to the velocity- 
defect law (3.6). 

The unanticipated aspect of the mean velocity profiles determined by (4.6) is the 
double logarithmic structure. This is most easily seen from the leading term of the 
inner bracketed expression in (4.6) for 4, a, /3, y, . , . < 1. One writes 

Hence for y 9 q5 9 k;l, the bracket (4.7) approaches unity and the resulting logarith- 
mic velocityprofile from (2.4) and (4.6) has amplitude 11,,2+ IIko]2. In  contrast, when 
$ 7, OL, ,8, . . .) the bracket (4.7) approaches zero and the resulting logarithmic velocity 
profile from (2.4) and (4.6) has the ‘outer’ amplitude l Io~z.  

The precise form of the change from one logarithmic law to the other depends on 
a, /3, y,  . . . . For example, if only a, ,8 and y are much greater than ki l ,  and the ‘smooth- 
ness’ conditions (4.5) are used to relate a and ,8 to y through (4.2)) then for y < 1 
bracket (4.7) may be written 

(4.8) { 1 = {Y2/(Y -id)”. 

The transition from the ‘inner) logarithmic law of amplitude lIo12+IIk,,12 to the 
‘outer) logarithmic law of amplitude II,l2 proceeds in q5 as { }’{ }, and hence is 80 Oi0 

complete within a factor of three on either side of q5 = y, If the term beyond /3 in (4.1) 
has a value large compared with ki l1 then the term added to bracket (4.8) has an 
effect of higher order in y on the abruptness of the transition. 

The data used by Virk (1 975) in constructing the idealization shown in figure 1 in 
this paper are reproduced here as figure 3. The symbol S, in the figure indicates the 
fractional drag reduction. A variety of different drag-reducing chemicals were used in 
those flows by a listed number of different observers. More recent data obtained by 
Reischman & Tiederman (1975) (also data in Frenkiel, Landahl & Lumley 1977) have 
increased the scatter seen in figure 2, but retain the features of an ‘ultima,te’ profile 
independent of the type or amount of drag-reducing chemical and a point of transition 
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FIGURE 3. Mean velocity profiles resulting from various drag-reducing chemical additives. 
(After Virk 1975.) 
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to an outer Newtonian velocity profile fully dependent on the type and amount of 
additive. It would appear that all these data can be described by a smooth spectrum 
for I and the three spectral parameters 11~1, 1&,1 and y .  

The data suggest that II,l is approximately constant, and is inversely proportional 
to the square root of the accepted value for von K&rm&n's constant. The value of 
Ilk0l is determined from the ratio ofthe slopes of the ' ultimate ' profile and the 'normal' 
Newtonian wall law. It also appears to be approximately constant for all reported 
flows containing polymer additives. The ratio 

from the Virk data, but is more nearly 1.5 from the Reischman & Tiederman data. In  
the spectral tail discussed here, the exponential decay factor y alone determines the 
point of transition, e.g. (4.8). Hence the data suggest that y is determined by the 
amount and type of chemical additive and can approach a value of unity. 

There are many other kinds of additives to shear flow which cause different effects 
from those caused by the polymer chemical additives used in the flows reported on in 
figure 3. For example, sand or glass beads near the boundary lead to a gravitational 
stabilization perhaps best dealt with as a two-fluid process. Additives such as neu- 
trally buoyant sticks or rods which are large compared with the smallest unstable 
scales of motion plausibly produce a viscous stabilization which could alter the value 
of I&,l and the inertially produced spectral smoothness in a range of k < k,. Polymer 
additives, when expanded, perhaps can be thought of as neutrally buoyant rods also, 
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but rods which are small compared with the smallest scales of motion. The available 
data are rationalized (e.g. Hinch 1977; Bark & Tinoco 1978) by suggesting how the 
polymer additives could inhibit instabilities and abruptly truncate the Ik  spectrum at a 
particular stress level. It should be noted that a sharp truncation of the Ik  spectrum 
does not necessarily imply a sharp truncation of the kinetic energy spectrum, for a 
primary effect of the polymer additive could be the high wavenumber decorrelation 
of the Reynolds stress UW. That the amplitude is observed to remain more or less 
constant, independent of the concentration of polymer additive, indicates the strong 
inertial control of the spectrum right up to viscous limit. 

A mechanistic determination of I Ik,l may not be immediately practical. Presuming, 
as this author does, that Landahl's stability studies are indeed in the correct direction, 
then a quantitative understanding is required of how those instabilities determine the 
amplitude of the 'travelling inflexions ' which in turn initiate later instabilities. How- 
ever, an estimate of amplitude 'can be found in terms of the boundary Reynolds 
number and maximum profile curvature. It is observed that a t  R, = L;zz/v N 8 the 
mean velocity profile departs from the laminar viscous form it has nearer the boundary. 
This value is found for normal fluids as well as for fluids exhibiting large drag reduction 
due to chemical additives. It would appear that additives which do not alter the 
normal viscosity of the fluid do not alter this critical Reynolds number for instability, 
but rather reduce the number and modify the momentum transporting properties of 
the growing disturbances. The data indicate for normal fluids that the Reynolds 
stress transports half the momentum by R, 21 10. The corresponding va,lue for flows 
exhibiting significant drag reduction is R ,  rr 14 (Reischman & Tiederman 1975, 
figure 8). From the same data one observes that the curvature of the mean profile a t  the 
above values of RB is near its maximum, with a ratio to the curvature at  the boundary 
of approximately &R, for normal flow and approximately ART for drag-reduced flows. 
Parenthetically, one notes that the process causing the abruptness of spectral trunca- 
tion which permits an ultimate profile to occupy the entire flow must, of course, be 
extremely non-Newtonian. However, from the RB's above it is equally startling that 
the inertial processes determining the amplitude of the smallest momentum trans- 
porting scales are so little affected by, or so able to compensate for, this non-Newton- 
ian behaviour. 

For an Ik  spectrum abruptly truncated at k,, the first contribution to profile curva- 
ture near the boundary is of scale z, kb l. If this scale is identified with the boundary- 
layer scale determined by RB above, then 

k, 2: R,IR,. (4.10) 

Hence an estimate can be made of a representative product amplitude lIol [ & , I  of the 
smoothest truncated spectrum consistent with the boundary condition (2.9). Using 
(2.4) and (2.12) one finds 

(4.11) 

From (4.10)) (4.11) and the observed maximum curvature it follows that 

lr0l Irkol = o(R%). (4.12) 

The explicit implication of (4.12) is that the amplitudes of the logarithmic mean 
velocity profiles are determined by the (viscous) stability constraints on the smallest 
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scales of motion. However, the ratio I&,l /II,l, observed to be approximately two, is not 
determined here and appears to be a complicated consequence of the interaction of 
large and small momentum transporting scales. Aspects of the large-scale process are 
discussed in the following section. 

5. Pressure-gradient effects, plane Couette flow and cylindrical Couette 
flow 

The simple defect law (3.6) results from an assumption of spectral smoothness which 
does not take into account, from (2.1), the contribution to profile curvature due to a 
pressure gradient. The profile curvature at the boundaries is entirely determined by 
the pressure gradient, of course, for there the Reynolds stress and its derivative 
vanish. In the steady state, the mean pressure gradient is constant across the entire 
channel and hence uniformly produces profile curvature. The advection term dGTi/dz 
fails by a small amount in mid-flow to cancel that uniform curvature production. It is 
proposed to model this process by adding an arbitrary amplitude at k = 0 to an 
otherwise smooth spectrum I k .  

If then the smoothness assumption (3.4) is appropriate for the entire spectrum 
except (AI), and (AZI),, one can write (3.3) as 

(5.1) 
I($) = ( I 0 - 4 ) + = + + 0  I1 (2) 

for all q5 9 k ; l .  From (2.4) and (5.1) the ‘pressure-modified’ symmetric velocity- 
defect law is found to be 

Equation (5.2) describes mean speed data for turbulent Poiseuille flow in channels 
within the limits of experimental error. With I ;  chosen to be inversely proportional to 
von KbrmAn’s constant, (I, - 11)/11 is approximately 0.2 for moderate to moderately 
high Reynolds numbers. Channel data at high and very high Reynolds numbers which 
might determine a possible weak dependence of (AI), on R, do not exist. 

Plane turbulent Couette flow provides quite different challenges of interpretation. 
While there is no pressure gradient in plane Couette flow, the curvature of the mean 
profile must change sign in the middle of the flow. This one profile inflexion is inertially 
stable because of its sign, yet the formalism used here for positive curvatures is of use 
in only half of the channel. In lieu of a more general formulation, asymptotic conse- 
quences of spectral smoothness in Ik for the half-channel are given below, subject to 
I(n) = 0 so that the antisymmetry conditions can be met. As for (3.5), but subject to 
I(n) = 0,  one finds for q5 9 EL1 

= I,=$ 1 + e@ + 0 ( t ) ,  (5.3) 

or I*I(B) = II,/ztan28+0 (?) (5.4) 

in terms of the angle 28 = q5 - n measured from channel centre. Hence the Couette 
half-channel velocity-defect law from (5.4) and (2.4) is written as 

tT(8)/l; = 4~-2~10~2[1nsec8-~82]+CB, (5 .5)  
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where C is an unknown constant of integration determining the slope of the mean 
profile in mid-flow. It is this appearance of the constant C which suggests that Couette 
flow may have no normal defect law and possibly could be quite different from pres- 
sure-driven flows. Indeed, the evidence of Reichart (1959) suggests that Cr: is a con- 
stant and that approximately 20°i0 of the velocity difference between the moving 
boundaries occurs in the interior of the fluid. Also, the upper-bound theory for Couette 
momentum transport of Basse (1970) derives a C in keeping with the Reichart data. 
Plane Couette flow is the epitome of simple shear flows, the realization of the constant 
stress layer, and deserves t'o be a central testing ground of shear turbulence theory. 
One hopes that plane Couefte turbulence will receive more experimental attention a t  
high Reynolds numbers in order to resolve the apparent conflicts between the data 
and traditional theories. 

An experimental study of Couette flow between rotating cylinders, in the narrow- 
gap and high Reynolds number limit, one day may provide the additional data sought 
in the preceding discussion. However, it  is a difficult experiment because the centrifugal 
effects, either stabilizing or destabilizing and measured by the Taylor number (e.g. 
Chandrasekhar 1961, p. 296), are always present to some extent. Perhaps as interesting 
and experimentally a more accessible limit is the narrow-gap, high Taylor number 
extreme of cylindrical Couette flow. In this limit the inviscid destabilization is caused 
principally by the radial gradient of I'r, where I' is the mean zonal velocity and r is 
the distance of the fluid element from the centre of rotation. In the observed turbulent 
flows (e.g. Taylor 1936), the gradient of t'r is of one sign only. Hence, in this limit and 
under the hypothesis of spectral 'smoothness', (3.5) times its complex conjugate 
would describe the qualitative character of that gradient. One predicts then that L' 
varies as I: tan 0 across the gap - 4. < 0 < + $n. The limited data are compatible 
with this result; however, the observed amplitude 1; is so small that the entire effect is 
confined to a region very near the boundary. Although Millikan's (1938) argument 
applies here, no logarithmic region has been reported for this flow. The conditions 
under which centrifugal destablization dominates over inflexional destabilization in 
this turbulent flow are yet to be established (e.g. Van Atta 1966). In gathering these 
additional data it is proposed that one should also employ drag-reducing chemicals. 
[A weak axial flow in the narrow gap could maintain statistical homogeneity and 
un-degraded additives.] As a consequence, an 'inner ' tan 0 region of greater amplitude 
is anticipated, paralleling the 'ultimate profile' of $4, and reflecting the effects of 
spectral truncation at high wavenumbers. 

6. Conclusion 
The observed positive curvature of the mean velocity in turbulent channel flow is 

presumed to have its mechanistic origin in the brief and violent instabilities which are 
the principal agents of the momentum t,ransfer process. The representation of the 
mean curvature as an everywhere positive spectral function sets the stage for the 
smoothness hypothesis of $ 3, whose asymptotic consequence is an explicit velocity- 
defect law. 

This stability-oriented representational framework for nonlinear turbulent equili- 
bration suggests new theoretical and physical objects of study. In $4, it is shown that 
a spectral tail, whose extent is restricted by drag-reducing chemical additives, gives 
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rise to an inner logarithmic layer of the mean velocity, whose slope is larger than the 
slope of the normal logarithmic layer. 

It is not proposed that this approach can lead to de.tailed understanding of the 
time-dependent dynamics of turbulence, but rather that it isolates certain amechan- 
istic consequences of the finite amplitude stabilizing process. It is in the latter direction 
that generalization is possible. Shear turbulence in different geometries should lead 
to qualitatively different average flows. The example of Couette turbulence is dis- 
cussed in the preceding section. In another example, axial turbulent flow between 
two cylinders departs significantly from a logarithmic profile when the inner cylinder 
is sufficiently small. With the approach taken in $3, application of the appropriate 
boundary and symmetry conditions can lead to an asymptotic defect law. 

The principal arena of generalization involves flows with quite different inviscid 
stability criteria. The example of laboratory thermal convection has been studied in 
the past in a quantitative context on the basis of the additional hypothesis of maximum 
heat transport (Malkus 1961) and the thermal profile found to compare favourably 
with the data of Townsend (1959). That theoretical study would be strengthened and 
its assumptions reduced in number by a mathematical restatement using the formal- 
ism outlined here. Stratified shear flows and convection with a mean shear both have 
observed turbulent mean profiles of temperature and velocity for which one could 
seek adechanistic defect laws from the appropriate positive-definite stability func- 
tions. Such results could be compared with the less than satisfactory (Sundararajan 
& Macklin 1976) dimensional and mixing-length theories for such flows. 

Finally, it is understood that the implicit rule in presenting any deduction of estab- 
lished results in an unfamiliar manner is that the new manner should require fewer 
assumptions, be more generalizable and not contradict the tested premises of the 
earlier work. It is hoped that this study may meet those requirements. 

The author is indebted to L. N. Howard and E. A. Spiegel for constructive sugges- 
tions on the presentation of this work, and to the Atmospheric Research Section of the 
National Science Foundation for support. 
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